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Abstract The initial purpose of this work is to provide a probabilistic explanation of re-
cent results on a version of Smoluchowski’s coagulation equations in which the number of
aggregations is limited. The latter models the deterministic evolution of concentrations of
particles in a medium where particles coalesce pairwise as time passes and each particle can
only perform a given number of aggregations. Under appropriate assumptions, the concen-
trations of particles converge as time tends to infinity to some measure which bears a striking
resemblance with the distribution of the total population of a Galton-Watson process started
from two ancestors.

Roughly speaking, the configuration model is a stochastic construction which aims at
producing a typical graph on a set of vertices with pre-described degrees. Specifically, one
attaches to each vertex a certain number of stubs, and then join pairwise the stubs uniformly
at random to create edges between vertices.

In this work, we use the configuration model as the stochastic counterpart of Smolu-
chowski’s coagulation equations with limited aggregations. We establish a hydrodynamical
type limit theorem for the empirical measure of the shapes of clusters in the configuration
model when the number of vertices tends to ∞. The limit is given in terms of the distribution
of a Galton-Watson process started with two ancestors.

Keywords Configuration model · Galton-Watson tree · Smoluchowski coagulation
equations
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1 Introduction

The motivation for this work stems from a recent study of a deterministic model for co-
agulation with limited number of aggregations. Specifically, in [5], one considers particles
that are determined by a pair of integers (a, k) where k ≥ 1 represents the size and a ≥ 0
the number of aggregations that the particle can perform. In the so-called symmetric model,
coagulations

{(a, k), (a′, k′)} −→ (a + a′ − 2, k + k′)

occurs at rate

aa′ct (a, k)ct (a
′, k′),

where ct (a, k) denotes the concentration of particles (a, k) at time t in the medium. Analyt-
ically, this means that the evolution of concentrations is governed by the following variation
of Smoluchowski’s coagulation equations (cf. the survey by Aldous [2]):

d

dt
ct (a, k) = 1

2

a+1∑

a′=1

k−1∑

k′=1

a′(a − a′ + 2)ct (a
′, k′)ct (a − a′ + 2, k − k′)

−
∞∑

a′=1

∞∑

k′=1

aa′ct (a, k)ct (a
′, k′), (1)

where the first term in the right-hand side accounts for the creation of particles (a, k) as
the result of coagulations of pairs {(a′, k′), (a − a′ + 2, k − k′)} and the second term for the
disappearance of particles (a, k) after a coagulation with a particle (a′, k′).

One of the main results in [5] is that under appropriate conditions on the initial data that
we shall recall later on, the concentrations ct (a, k) have a limit as time t tends to infinity
which is given by

c∞(a, k) = 1{a=0}
1

k(k − 1)
ν∗k(k − 2) for a ∈ N and k ≥ 2. (2)

Here, ν is a certain probability measure on N with
∑∞

n=0 nν(n) ≤ 1 that depends on the
initial data, and ν∗k = ν ∗ · · · ∗ ν denotes its k-th convolution power. The expression (2)
bears a striking resemblance with a special case of the celebrated formula due to Dwass [11]
who established that the total population T2(ν) generated by a (sub)-critical Galton-Watson
branching process with reproduction law ν and started from two ancestors is given by

P(T2(ν) = k) = 2

k
ν∗k(k − 2), k ≥ 2. (3)

This invites for a probabilistic explanation and provides the incentive for the present work.
Our approach for relating (2) to (3) stems from the fact that solutions to the classical

Smoluchowski’s coagulation equations (without restriction on the number of aggregations)
appear as the hydrodynamical limit of certain stochastic coalescent models introduced by
Marcus and Lushnikov. In some loose sense, the latter describe the microscopic random
dynamics of the particle system when the macroscopic evolution is governed by Smolu-
chowski’s coagulation equations. This important feature has been established rigorously by
Norris [18]. We also refer to Sect. 5.2.1 in [4] for an elementary approach in the special case
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of the multiplicative kernel, as the latter bears an obvious similarity with (1). On the other
hand, it is well-known that the multiplicative coalescent is naturally related to the size of
the connected components in the random graph model of Erdős and Rényi, see in particular
the remarkable paper by Aldous [1]. This leads us to consider an extension of the random
graph model where the sequence of degrees of vertices is given, and which is known as the
configuration model. Loosely speaking, the configuration model is constructed by an ele-
mentary stochastic algorithm which aims at producing a random graph on a set of vertices
with pre-described degrees; in general the resulting graph is not simple, in the sense that
there may exist loops and multiple edges. Typically, a certain number of stubs is appended
to each vertex, and one joins pairwise the stubs uniformly at random to create edges between
vertices. This induces a natural partition of the set of vertices into clusters, i.e. connected
components.

Since its introduction independently by Bollobás [8] and Wormald [24] (see also Ben-
der and Canfield [3]), this model has been studied in the mathematical literature by many
authors. We refer e.g. to [16] for an interesting review of applications of this and other ran-
dom graph models to some real life network systems and to Chap. 3 in Durrett [10]. The
main known results chiefly concern asymptotics when the number of vertices is large and
the empirical measure of the degrees of vertices converges. In particular, Molloy and Reed
[14] have determined the critical parameter for the existence of a giant component; see also
[15] and [17]. In different directions, van der Hofstad, Hooghiemstra and co-authors [21–
23] have made deep contributions to the study of distances between vertices in such random
graphs, while Britton et al. [9] used the configuration model to produce large random simple
graphs with pre-described asymptotic degree distribution.

If we neglect the appearance of multiple edges, loops or cycles which do not contribute
to aggregation of clusters, the configuration model may serve as a stochastic counterpart to
the deterministic evolution of concentrations in the variant (1) of Smoluchowski’s coagula-
tion equations. This leads us to investigate the size of typical clusters, and more generally
their combinatorial structures. Roughly speaking, the central result of this work is a hydro-
dynamical limit theorem for the empirical distribution of the shapes of clusters rooted at
a generic stub. The limit is expressed in terms of a pair of Galton-Watson trees which are
connected by an extra edge between the two roots. In particular, this yields the probabilistic
explanation of the formal similarity between the solution (2) and Dwass formula (3).

Let us now present some heuristics which are close to some of those that have already
been used in the literature on configuration models to relate the latter to Galton-Watson
processes; see in particular [14] and [22]. Imagine that we pick a stub uniformly at random;
the degree of the vertex to which this stub is appended has then the size-biased law of the
degree of a typical vertex. We then pick a second stub uniformly at random to create the first
edge. Informally, when the number of vertices is large, the degree of the vertex to which
the second stub is appended has again the size-biased law and is essentially independent of
the first. These two vertices should be viewed as the ancestors of two growing populations,
where, by induction, individuals beget independently and with a reproduction law given
by the distribution of the outer degree of a size-biased vertex. When the reproduction law is
critical or sub-critical, the Galton-Watson process eventually becomes extinct, and extinction
occurs before any loop, multiple edge or cycle arises in that cluster of the configuration
model. This suggests that the combinatorial structure of a typical (not too large) cluster
could be described as a pair of independent Galton-Watson trees which are connected by
an additional edge between the two roots. More precisely, the reproduction law should be
given by the size-biased degree of a typical vertex, shifted by one unit, because the number
of children corresponds to the outer-degree of the vertex.
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The present work can be viewed as a companion to the recent paper [6], in which we also
identify in terms of certain Galton-Watson trees the limiting empirical distribution of random
structures that appear in a toy model for polymerization. More precisely, we consider in
[6] a system of grabbing particles, where particles consist of monomers having a certain
number of arms. Arms are activated successively uniformly at random, and each time an
arm is activated, it grabs a particle uniformly at random amongst those which have not been
previously grabbed and do not belong either to its own cluster. The main result of [6] is
that when the initial number of particles is large and the numbers of arms are given by
i.i.d. random variables with mean less than 1, then the empirical distribution of the shapes
of polymers is close to that induced by a Galton-Watson tree with a single ancestor and
reproduction law given by the distribution of the number of arms of a typical monomer.

The plan of this work is as follows. The next section is devoted to preliminaries on con-
figuration models, the combinatorial structure of planar rooted trees, and Galton-Watson
processes. The emphasis is put on planar structures and their codings by the sequence of
degrees via breadth-first search. The main result on the empirical distribution of the struc-
tures of rooted clusters in large random configurations is stated in Sect. 3 and then proved by
explicit first and second moments estimates. Finally Sect. 4 is devoted to some applications.
We shall first point at certain invariance properties of Galton-Watson trees under random
re-rooting and explain the striking resemblance between the formulas (2) and (3). We then
conclude by presenting a dynamical version of the random configuration model which can
be viewed as the microscopic random evolution associated to the coagulation equations with
limited aggregations (1).

2 Preliminaries

2.1 Pairings, Configurations and Clusters

The aim of this work is to relate random configuration models to Galton-Watson trees, and
as the latter have a natural planar structure, we shall introduce the former in planar setting
which is tailored for our purposes. In this direction, we should imagine particles as planar
star-shaped objects consisting of a vertex to which a certain number of stubs are appended.

Formally, we consider some finite set V of vertices and a map d : V → N
∗ where d(v)

represents the degree of the vertex v, that is the number of stubs attached to v. We denote
by S = S(V, d) the set of stubs and shall suppose for the sake of simplicity that the total
number of stubs

S := #S =
∑

v∈V

d(v)

is even; otherwise we may always decide to add a new stub to some vertex (or to add a vertex
with a single stub). We call a partition of S into S/2 pairs a pairing of stubs and write �(S)

for the set of pairings of stubs. We first point at the following elementary facts.

Lemma 1 (i) The cardinality of �(S) is given by

#�(S) = S!
(S/2)!2−S/2 =

S/2∏

i=1

(S − 2i + 1).
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(ii) Consider a partition of V into two subsets V1, V2 such that S1 := ∑
v∈V1

d(v) and
S2 := ∑

v∈V2
d(v) are even numbers. Set S1 := S(V1, d) and S2 := S(V2, d). Then the map

(π1,π2) −→ π1 	 π2

is a bijection from �(S1) × �(S2) to the subset of �(S) consisting of pairings π such that
there are no pairs {s1, s2} in π formed by a stub s1 attached to a vertex in V1 and a stub s2

attached to a vertex in V1.

Proof Indeed, a generic pairing can be obtained by enumerating the stubs by {1, . . . , S} and
then pairing the stubs according to the couples (1,2), (3,4), . . . , (S − 1, S). There are S!
possible enumerations and the mapping is (S/2)!2S/2 on 1, where (S/2)! accounts for the
number of permutations of the S/2 couples (2i − 1,2i), and 2S/2 for the number of ways
S/2 unordered pairs can be ordered into couples. This establishes the first claim. The second
is obvious. �

We then form edges e = {v, v′} with v, v′ ∈ V by joining the tips of pairs of stubs {s, s ′},
where s (respectively, s ′) is appended to v (respectively, to v′). We stress that an edge is
unoriented, that it can be a loop (i.e. the two vertices v and v′ defining an edge may coincide),
and that the same edge may appear by joining different pairs of stubs. Each pairing of stubs
π yields a configuration γ (π), that is the family of the S/2 edges induced by the pairing.
Note that there may be multiple edges; the same edge is repeated in γ (π) as many times as
it arises by joining different pairs of stubs in π . We also stress that the map π → γ (π) is
not injective.

We view an edge which is not a loop as an elementary path connecting two different
vertices, so a configuration γ (π) on (V, d) naturally induces a partition of V into connected
components. Endowing a given connected component with the restriction of γ (π) to the set
of edges formed by pairs of vertices in that component, we obtain a cluster.

2.2 Planar Rooted Trees and their Structures

Lemma 1(ii) enables us to reduce the study of a given cluster to that of pairings π ∈ �(S)

such that the entire set of vertices V is connected for the configuration γ (π). We shall
therefore focus on that case in this section. Recall that a cycle is a sequence of � ≥ 3 distinct
vertices, say v1, . . . , v�, such that there exists an edge connecting vj and vj+1 for every
j = 1, . . . , � − 1 and also an edge connecting v� and v1.

A configuration γ (π) that connects V is called a tree if it contains no loops, no multiple
edges, and no cycle. Note that this can occur only when S/2 = #V − 1. Because particles
(i.e. vertices and the stubs that are appended) can be viewed as planar objects, we may think
of tree-configurations as planar structures, in the sense that they can be represented in the
plane in such a way that edges are line segments which do no cross, by attributing lengths to
the edges in an appropriate manner. Throughout this section, we assume that #V = k and that
the configuration γ (π) is a tree; in particular γ (π) consists of k −1 edges and S = 2(k −1).

To describe precisely the shape, that is the combinatorial structure, of a tree, we need to
specify an origin and an orientation. For this, we distinguish a stub s and call it the root.
This stub is appended to a certain vertex v that we use as the origin. Distinguishing s also
enables us to order all the stubs attached to v by deciding that the first stub is s and the next
(if any) are ranked clockwise from that one. Further, for every vertex v′ 
= v in that tree,
we distinguish the stub appended to v′ that points at the origin v. This provides a natural
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Fig. 1 Enumeration by
breadth-first search of the
vertices of a planar tree rooted at
the stub =�. The degree
sequence is
(3,4,1,1,3,3,1,1,3,1,1,1,1)

order on the set of stubs appended to any given vertex of the tree, and thus enables the use
of breadth-first search to enumerate the vertices of the tree.

Specifically, set s1 = s and v1 = v, define si+1 as the stub that is paired with the i-th stub
appended to v1 for i = 1, . . . , d(v1), and write vi+1 for vertex to which si+1 is appended.
We should think of v2, . . . , vd(v1)+1 as the children of v1. The stub s2 is chosen as the first of
the stubs appended to v2, thus it is the unique stub pointing at the origin and the other stubs
attached to v2 are ranked clockwise from s2 and point at the children of v2 (i.e. the vertices at
distance 2 from the origin v1 and at distance 1 from v2). We denote these d(v2)− 1 children
by vd(v1)+2, . . . , vd(v1)+d(v2)+1, and continue with the next children v3, . . . , vd(v1)+1 of v1 is an
obvious way. Then we proceed with indexing the third generation of vertices, in the order
which is naturally induced by the indexation of the second generation, and so on. See Fig. 1.

We write di for the degree of the i-th vertex. We stress that for 2 ≤ i ≤ k, the outer-degree
of vi , i.e. the number of stubs appended to vi that point away from the origin, is di − 1. It is
well-known that the sequence of degrees d = (d1, . . . , dk) fulfills

min{j ≥ 1 : d1 + · · · + dj = 2(j − 1)} = k, (4)

and characterizes a unique planar rooted tree structure. Conversely, any finite sequence d =
(d1, . . . , dk) such that (4) holds encodes a planar rooted tree structure with k vertices. We
write D for the set of sequences d = (d1, . . . , dk) which fulfill (4), where the length k ∈ N

∗
is arbitrary, and think of the set D of sequences of degrees as the set of structures of planar
rooted trees. We refer for instance to Sect. 6.2 in Pitman [19] for details.

We now summarize this discussion, introducing first some terminology for convenience.
A bijection {1, . . . , k} → V can be represented as a sequence v = (v1, . . . , vk) of distinct
vertices and will be referred to as an enumeration of V . We also call a map ς : V → S that
associates to each vertex v ∈ V a stub s ∈ S appended to that vertex a selection of stubs. For
every pairing π ∈ �(S) such that the configuration γ (π) on V is a tree and every choice of
a distinguished stub s ∈ S , breadth first search yields a unique enumeration v = (v1, . . . , vk)

of V such that the sequence d(v) = (d(v1), . . . , d(vk)) belongs to D (i.e. fulfills (4)), and a
unique a selection of stubs ς . The map

(π, s) −→ (v, ς)

is bijective. More precisely, we recover the pairing π and the root stub s by first constructing
the planar rooted tree structure associated to d = (d(v1), . . . , d(vk)), and then placing the
vertices v1, . . . , vk on this structure in the order induced by the breadth first search. The first
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stub appended to v1 is s = ς(v), and for every i = 2, . . . , k, ς(vi) is the stub appended to vi

which points at the origin v1. This determines the pairing π .
In order to record this analysis, it is convenient to introduce the multinomial coefficient

M(V, d) :=
(

k

�1, . . . , �j

)
= k!

�1! · · ·�j ! , (5)

where j is the number of different values, say x1, . . . , xj , occurring in the family (d(v) : v ∈
V), and �i the number of occurrences of the value xi in that family. For every structure d ∈ D,
we say that d is compatible with (V, d) if there is at least an enumeration v = (v1, . . . , vk) of
V such that d = (d(v1), . . . , d(vk)), that is if and only if the sequence d takes the same values
with the same multiplicity as the family (d(v) : v ∈ V). The following statement should now
be plain.

Lemma 2 Suppose that #V = k and S = 2(k − 1). Fix a rooted planar tree structure d =
(d1, . . . , dk) ∈ D. If d is compatible with (V, d), then the number of pairs (π, s) ∈ �(S)× S
for which the configuration γ (π) is a tree with structure d when rooted at s equals

M(V, d)
∏

v∈V

d(v).

Otherwise (i.e. if d is not compatible), this number is 0.

We stress that all the rooted planar tree structures which are compatible with (V, d) are
thus equally likely to occur if we choose the pair (π, s) ∈ �(S) × S uniformly at random.
In the same vein, it may be also interesting to point at the following simple formula, even
though it will not be used in this paper.

Proposition 1 Suppose that #V = k and S = 2(k − 1). The number of pairings π ∈ �(S)

for which the configuration γ (π) is a tree, is

(k − 1)!
∏

v∈V

d(v),

Proof To establish the formula, we simply need to calculate the number of enumerations v
of V for which the sequence (d(v1), . . . , d(vk)) corresponds to some rooted planar tree struc-
ture. Recall from the ballot theorem (see, e.g., Lemma 6.1 in [19]) that for each enumeration
v, there is a unique cyclic permutation σ of {1, . . . , k} such that (d(vσ(1)), . . . , d(vσ(k))) ful-
fills (4). This shows that this number is (k − 1)!. �

2.3 Galton-Watson Trees with Two Ancestors

We consider now a probability measure ν on N and associate to ν a measure on D by

GW
ν
2(d) =

k∏

i=1

ν(di − 1), (6)

where d = (d1, . . . , dk) denotes a generic rooted planar tree structure.
The measure GW

ν
2 has a simple interpretation in terms of Galton-Watson branching

processes, and is in fact a sub-probability. More precisely, consider a Galton-Watson process
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with reproduction law ν and started from two ancestors. The process can be represented on
the upper-half plane, where the individuals at generation � ∈ N lie on horizontal line y = �,
in an order consistent with that of their respective parents, so that the edges (line-segments)
linking parents to children do not cross each other. We further connect the two ancestors by
an additional edge, and distinguish the stub attached to the left-most ancestor that thus points
at the right-most ancestor. This enables us to list individuals (vertices) by breadth first search
just as in the preceding section. Observe that the degree of the left-most ancestor (i.e. the
origin) is distributed as 1 + ξ where ξ is a random variable with law ν, whereas the outer-
degrees of the other individuals (i.e. their numbers of children) are given by independent
copies of ξ .

The event when the total population is finite has probability one if and only if the re-
production law ν is critical or subcritical, i.e.

∑
i∈N

iν(i) ≤ 1, and ν 
= δ1. Restricting our
attention to this event, the structure of this planar rooted tree is a random variable in D which
has distribution GW

ν
2 and is defective in the supercritical case.

Remark In the case when ν is the Poisson distribution with parameter p ≤ 1, then it is easily
checked that the law GW

ν
2 also describes the law of the genealogical tree of a Galton-Watson

process with reproduction law ν, started from a single ancestor, and conditioned to have size
at least 2.

3 A Limit Theorem for Typical Rooted Clusters

For each fixed integer n, we consider a set Vn of n vertices and a function dn : Vn → N
∗

that specifies the number of stubs appended to each vertex. We introduce the empirical
distribution of the number of stubs

μn(i) := 1

n
#{v ∈ Vn : dn(v) = i}, i ∈ N

∗.

We write

Sn :=
∑

v∈Vn

dn(v) = n

∞∑

i=1

iμn(i)

for the total number of stubs, assuming for simplicity that this quantity is even. Our basic
assumption is that the limit

lim
n→∞μn(i) := μ(i) (7)

exists for every i ≥ 1, and that the average number of stubs

n−1Sn =
∞∑

i=1

iμn(i)

converges as n → ∞ to the first moment of μ, i.e.

lim
n→∞

∞∑

i=1

iμn(i) =
∞∑

i=1

iμ(i) := m < ∞. (8)
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We also denote by μ∗ the probability measure on N
∗ which is obtained from μ by size-

biased sampling, that is

μ∗(i) := iμ(i)

m
, i ∈ N

∗.

A standard application of Scheffé’s lemma shows that (7) can then be re-enforced to

lim
n→∞ iμn(i)

n

Sn

= μ∗(i) in L1(N∗). (9)

Finally, we introduce the probability measure ν on N induced from μ∗ by the shift i → i −1
from N

∗ to N, viz.

ν(i) = μ∗(i + 1), i ≥ 0.

We write Sn for the set of stubs appended to vertices in Vn. We pick a pairing π ∈
�(Sn) uniformly at random, and denote by �n := γ (π) the resulting random configuration
on (Vn, dn). For every stub s ∈ Sn, if the cluster of �n which contains s is a tree, then Ts

denotes the combinatorial structure which results from rooting that tree at the stub s (see
Sect. 2.2), and otherwise, we decide that Ts = ∅.

We are interested in the random variable

ρn(d) := 1

Sn

#{s ∈ Sn : Ts = d}, d ∈ D

which counts the proportion of stubs s such that the cluster rooted at s induced by �n is a
tree with structure d. Similarly, we write

ρn(∅) := 1

Sn

#{s ∈ Sn : Ts = ∅}

for the proportion of stubs s such that the cluster containing s induced by �n is not a tree.
The collection (ρn(d) : d ∈ D) should thus be viewed as a variant of the empirical measure
of tree-clusters.

We now able to state our main asymptotic result on large random configurations. We
stress that similar results connecting the structure of clusters in random graphs to branching
processes have already appeared in the literature, see e.g. Theorem 11.6 in [7] or Theorem 8
in [20] for related statements on different random graph models.

Theorem 1 Assume that (7) and (8) hold. Then for every planar rooted tree configuration
d ∈ D, the following limit holds in L2(P):

lim
n→∞ρn(d) = GW

ν
2(d).

If we further suppose that

∞∑

i=1

i(i − 2)μ(i) ≤ 0, (10)

and also exclude the degenerate case when μ is the Dirac point mass at 2, then

lim
n→∞ρn(∅) = 0 in L1(P).
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The condition (10) plays an important part for random configuration models. According
to a well-known result due to Molloy and Reed [14], when (10) fails, then there is some
constant c > 0 such that with probability one, the random configuration �n contains almost
surely a cluster of size at least cn when n is sufficiently large (more precisely, Molloy and
Reed assume some further technical conditions which have been removed in a recent work
by Janson and Luczak [13]). The size of this giant component is estimated in [15]. At the
opposite, when (10) holds with a strict inequality (again assuming some further technical
conditions), Molloy and Reed [14] have shown that with probability one, the random con-
figuration �n contains at most n1/4 cycles and no cluster of size at least n1/4 whenever n is
sufficiently large. Note that in the critical case when (10) is an equality, Theorem 1 implies
that the probability that there is a cluster of size at least εn tends to 0 for any ε > 0, because
GW

ν
2 is a probability measure on D.

The proof of Theorem 1 relies on asymptotics for the first and second moments of ρn(d).
We first state:

Lemma 3 We have

lim
n→∞ E(ρn(d)) = GW

ν
2(d)

for every d ∈ D.

Proof Let the structure d = (d1, . . . , dk) have size k ≥ 2. We write V ′ for a generic subset
of Vn with k vertices and S ′ for the set of stubs in Sn which are appended to vertices in V ′.
There are two cases.

If the unordered families of degrees {d(v′) : v′ ∈ V ′} and {di : 1 ≤ i ≤ k} do no coincide
(recall that in such families, numbers are repeated according to their multiplicity), then there
is no pairing of stubs for which the vertices of V ′ are those of a tree-cluster with structure d
when properly rooted. We say that V ′ is bad.

Otherwise, we say that V ′ is good. Introduce the set G′ of couples (s,π) ∈ S ′ × �(Sn)

such that the cluster rooted at s induced by the configuration γ (π) is a tree whose set of
vertices coincides with V ′ and has structure d. The cardinal of G′ can then be computed by
combining Lemmas 1 and 2. Since #S ′ = 2(k − 1), one gets

#G′ = M(d)
(Sn − 2(k − 1))!
(Sn/2 − k + 1)! 2−Sn/2+k−1

k∏

i=1

di, (11)

where M(d) denotes the multinomial coefficient

M(d) :=
(

k

�1, . . . , �j

)
= k!

�1! · · ·�j ! ,

with j the number of different values in the sequence d and �i the number of occurrences in
d of the i-th value for 1 ≤ i ≤ j .

So it remains to estimate the number of good subsets V ′ with k vertices, and for this
we use a probabilistic argument. We sample uniformly at random k vertices in Vn, say,
v1, . . . , vk , successively and without replacement. It should be plain from the hypothesis
(7) that when n → ∞, the k-tuple of degrees (dn(v1), . . . dn(vk)) converges in distribu-
tion to the k-tuple formed by i.i.d. variables with law μ; in particular the probability that
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(dn(v1), . . . , dn(vk)) = d tends to
∏k

i=1 μ(di) as n → ∞. We readily deduce that the proba-
bility that the (unordered) family {d(v1), . . . , d(vk)} is good converges as n → ∞ to

k!
M(d)

k∏

i=1

μ(di).

As there are n!/(n − k)! ∼ nk k-tuples of distinct vertices in Vn and as the map that trans-
forms a k-tuple into an unordered set is k! to 1, we conclude that the number of good subsets
in Vn is equivalent for large n to

nk

M(d)

k∏

i=1

μ(di). (12)

Recall from Lemma 1(i) that

#(Sn × �(Sn)) = Sn

Sn!
(Sn/2)!2−Sn/2,

and that diμ(di) = mν(di − 1), by definition. Putting the pieces together, we find

E(ρn(d)) ∼ nk

Sn

(Sn − 2(k − 1))!(Sn/2)!
Sn!(Sn/2 − k + 1)! 2k−1

k∏

i=1

(diμ(di))

∼ nk

Sn

S−2(k−1)
n (Sn/2)k−1 2k−1

k∏

i=1

(mν(di − 1))

= (nm)k

Sk
n

k∏

i=1

ν(di − 1).

By (6) and (8), this completes the proof. �

Lemma 3 essentially means that if we pick a stub s uniformly at random in Sn and
independently of the random configuration �n, then the conditional distribution of the com-
binatorial structure of the random cluster rooted at s given the event that this cluster is a tree,
converges weakly as n → ∞ to the Galton-Watson law GW

ν
2. Theorem 1 is a much stronger

statement that involves the empirical distribution of structures of clusters, and requires sec-
ond moment estimates.

Lemma 4 We have

lim
n→∞ E((ρn(d))2) = (GW

ν
2(d))2

for every d ∈ D.

Proof The argument is similar to that of Lemma 3; in particular we shall use the same
notation and terminology. We start from the expression

E((ρn(d))2) = S−2
n E(#{(s ′, s ′′) ∈ Sn × Sn : Ts′ = Ts′′ = d}).

Let V ′ and V ′′ two generic subsets of Vn, both with k vertices, and write S ′ (respectively,
S ′′) for the set of stubs in Sn which are appended to vertices in V ′ (respectively, V ′′). Note
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that for every stubs s ′ ∈ S ′ and s ′′ ∈ S ′′, the identity Ts′ = Ts′′ 
= ∅ can occur only if V ′ and
V ′′ are both good and, either coincide or are disjoint.

We first consider the situation when V ′ = V ′′. Recall that for any s ′ ∈ S ′, if Ts′ = d, then
S ′ = S ′′ has exactly 2(k − 1) stubs. It follows from the proof of Lemma 3 that the number
of triplets (s ′, s ′′,π) ∈ S ′ × S ′′ × �(Sn) such that the cluster rooted at s ′ induced by the
configuration γ (π) is a tree whose set of vertices coincides with V ′ and Ts′ = Ts′′ = d, is
bounded from above by

2(k − 1)M(d)
(Sn − 2(k − 1))!
(Sn/2 − k + 1)! 2−Sn/2+k−1

k∏

i=1

di ;

see (11). Multiplying this by the number of good subsets V ′ in Vn, that is approximatively
by (12), we get a quantity which is small compared to

#(Sn × Sn × �(Sn)) = S2
n

Sn!
(Sn/2)!2−Sn/2

when n → ∞. We conclude that in the evaluation of E((ρn(d))2), the contribution of pairs
of stubs (s ′, s ′′) that belong to the same cluster becomes asymptotically negligible.

Next we consider the situation when V ′ and V ′′ are good and disjoint. By calculations
similar to those that yield (12) in the proof of Lemma 3, we get that the number of good
disjoint pairs of subsets (V ′, V ′′) in Vn is equivalent for large n to

n2k

M(d)2

(
k∏

i=1

μ(di)

)2

.

It then follows from Lemmas 1 and 2 that the number of triplets (s ′, s ′′,π) ∈ S ′× S ′′ ×�(Sn)

such that Ts′ = Ts′′ = d and the stubs s ′ and s ′′ belong to disjoint clusters is close to

n2k (Sn − 4(k − 1))!
(Sn/2 − 2k + 2)!2−Sn/2+2k−2

(
k∏

i=1

diμ(di)

)2

.

Putting the pieces together yields the estimate

E((ρn(d))2 ∼ n2k

S2
n

(Sn − 4(k − 1))!(Sn/2)!
Sn!(Sn/2 − 2k + 2)! 22k−2

(
k∏

i=1

diμ(di)

)2

∼ n2k

S2
n

S−4(k−1)
n (Sn/2)2k−2 22k−2

(
k∏

i=1

(mν(di − 1))

)2

∼
(

k∏

i=1

ν(di − 1)

)2

.

By (6), this shows our claim. �

We are now able to establish Theorem 1.
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Proof of Theorem 1 Combining Lemmas 3 and 4, we see that the variance of ρn(d) tends to
0 as n → ∞, which establishes the first claim. Assume now further that (10) holds and that
μ 
= δ2. Equivalently, this means that the reproduction law ν of the Galton-Watson process
is critical or sub-critical, and is not the Dirac mass at 1. So extinction occurs a.s. and

∑

d∈D

GW
ν
2(d) = 1.

As

ρn(∅) = 1 −
∑

d∈D

ρn(d),

Fatou lemma entails our second assertion. �

4 Some Applications

In this Section, we shall first observe an interesting property of invariance under uniform
re-rooting for Galton-Watson trees with two ancestors, and then we will develop the con-
nexions between the random configuration model and the coagulation equations with limited
aggregations as consequences of Theorem 1.

4.1 Invariance under Random Re-Rooting

Recall that Theorem 1 implies that if one selects a stub uniformly at random and indepen-
dently of a large random configuration that fulfills the conditions there, then the structure
of the cluster rooted at that stub has asymptotically the distribution GW

ν
2. This hints at an

interesting property of invariance of such Galton-Watson trees under uniform random re-
rooting. Recall the construction of the structure of a planar tree rooted at some stub as it has
been presented in Sect. 2.2; Fig. 2 below should explain better than words what is meant by
re-rooting a rooted planar tree at some stub.

Fig. 2 Two genealogical trees, both with two ancestors lying at the lowest level. The left-most ancestor
serves as the origin, the root-stub pointing at the right-most ancestor. The tree on the right is the image of the
tree on the left by re-rooting at the stub =�. Vertices are labeled by breadth first order before re-rooting
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Corollary 1 Suppose that ν is a critical or subcritical probability measure on N with ν 
= δ1.
Let D be a random rooted planar tree structure with distribution GW

ν
2. Conditionally on D,

select one of the 2(|D| − 1) stubs of D uniformly at random, and denote by D′ the new
structure obtained from D by re-rooting at that stub. Then D′ has again the law GW

ν
2.

Proof Re-rooting has no effect on the degree of a vertex, so we only need to verify the
statement for the conditional law of the Galton-Watson genealogical tree with two ancestors
given the unordered family of the degrees of vertices.

Fix some unordered family, say �, of k positive integers (with possible repetitions),
which add up to 2(k − 1) and such that ν(δ − 1) > 0 for any integer δ in that family. Denote
by D(�) the subset of rooted planar tree structures corresponding to some ordering of �.
We see from (6) that the conditional law GW

ν
2(· | D(�)) is simply the uniform distribution

on D(�).
Next consider the random configuration on a set k vertices with degree family � that is

induced by uniform random pairing, given that this configuration is a tree. Then root the
configuration using some stub that is picked independently and uniformly at random. On
the one hand, by construction, the law of the resulting combinatorial structure is obviously
invariant by uniform random re-rooting. On the other hand, we see from Lemma 2 that it
also coincides with the uniform distribution D(�). This established our claim. �

We also refer to the recent work by Haas et al. [12] and references therein for a different
property of invariance under uniform re-rooting for certain classes of random continuous
trees.

It may be interesting to point also at the following avatar of Corollary 1. A planar rooted
tree is said planted if the degree of the origin, i.e. of the vertex to which the root-stub is
appended, is 1. In other words, the combinatorial structure d = (d1, . . . , dk) fulfills d1 = 1.
So a planted Galton-Watson tree describes the genealogy of a population where individuals
beget independently with the same reproduction law, except the ancestor who has exactly
one child. An easy consequence of Corollary 1 is that in the critical or sub-critical case, the
structure of a planted Galton-Watson tree is statistically invariant under re-rooting at a leaf
(i.e. a vertex with degree 1) chosen uniformly at random.

4.2 Connexions with Coagulation Equations with Limited Aggregations

We finally turn our attention to the initial motivation for this work, namely the connexion
with coagulation equations with limited aggregations (1). We shall first consider a static
relation between terminal states which explains the intriguing resemblance of (2) and (3).
Then we shall extend this by considering a dynamical version of the random configuration
model.

In this direction let us denote for every k ≥ 2 by Cn(k) the number of clusters of size
k in the random configuration �n, i.e. the number of distinct connected components with k

vertices in the partition of Vn induced by �n. The following statement solves a problem that
has been addressed in Sect. II.C of [17] by analytic and numerical techniques.

Corollary 2 Assume that (7), (8) and (10) hold, and exclude the case when μ = δ2. We have

lim
n→∞n−1Cn(k) = m

k(k − 1)
ν∗k(k − 2) in probability.
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Proof Let us introduce first for every k ≥ 2 the subset Dk of D consisting of structures of
rooted planar trees d = (d1, . . . , dk) of length k, and recall that according to Dwass [11],

GW
ν
2(Dk) = 2

k
ν∗k(k − 2),

where ν∗k stands for the k-th convolution power of ν. As a tree of size k has exactly 2(k −1)

stubs and Dk is a finite set, we deduce from Theorem 1 that if we denote by τn(k) the number
of clusters which are trees of size k, then

lim
n→∞

2(k − 1)

Sn

τn(k) = 2

k
ν∗k(k − 2),

where the convergence takes place in L2(P) and for every k ≥ 2. Then we pick an arbitrary
sequence of integers that tends to ∞, from which we can excerpt by a diagonal extraction
procedure a subsequence such that with probability one,

lim
n�∞

2(k − 1)

Sn

τn(k) = 2

k
ν∗k(k − 2) for all k ≥ 2,

where the notation n � ∞ means that n tends to infinity along that subsequence.
Then observe that for each n, there is the obvious inequality

∑

k≥2

2(k − 1)τn(k) ≤ Sn,

while
∑

k≥2

2

k
ν∗k(k − 2) =

∑

k≥2

GW
ν
2(Dk) = 1,

since the reproduction law ν of the Galton-Watson process is critical or sub-critical and
ν 
= δ1. A standard combination of Fatou and Scheffé lemmas entails that

lim
n�∞

∞∑

k=2

E

(∣∣∣∣
2(k − 1)

Sn

τn(k) − 2

k
ν∗k(k − 2)

∣∣∣∣

)
= 0.

Next, note that τn(k) ≤ Cn(k) and
∑

k≥2 2(k − 1)Cn(k) ≤ Sn as at least 2(k − 1) distinct
stubs are needed to connect k vertices. It follows that

∞∑

k=2

E

(∣∣∣∣
2(k − 1)

Sn

(Cn(k) − τn(k))

∣∣∣∣

)

= E

( ∞∑

k=2

2(k − 1)

Sn

Cn(k)

)
− E

( ∞∑

k=2

2(k − 1)

Sn

τn(k)

)

≤ 1 − E

( ∞∑

k=2

2(k − 1)

Sn

τn(k)

)
,

and we know from the above that this quantity tends to 0 as n � ∞.



102 J. Bertoin, V. Sidoravicius

This shows that

lim
n�∞

∞∑

k=2

E

(∣∣∣∣
2(k − 1)

Sn

Cn(k) − 2

k
ν∗k(k − 2)

∣∣∣∣

)
= 0,

and since by the assumption (8), Sn/n → m, we have thus proved that

lim
n�∞

∞∑

k=2

kE

(∣∣∣∣
1

n
Cn(k) − m

k(k − 1)
ν∗k(k − 2)

∣∣∣∣

)
= 0.

As the sequence of integers tending to infinity that we started from is arbitrary, this estab-
lishes our claim. �

Corollary 2 provides the explanation for the asymptotic behavior (2) that motivated this
work. Specifically, we know from Theorem 1 that when the requirements (7), (8) and (10)
are fulfilled, then multiple edges, loops or cycles are rare. Roughly speaking, this means
that almost all creation of edges correspond to aggregations of clusters and thus enables us
to view the configuration model as a stochastic microscopic version of the terminal state of
concentrations with a deterministic evolution governed by the variant (1) of Smoluchowski’s
coagulation equations. In [5], one assumes that initially all particles are monomers, i.e. con-
sist of isolated vertices to which some stubs are appended. In the notation of the present
work (beware that this differs from that in [5]!), the initial concentration of particles with
i ≥ 1 stubs is m−1μ(i), which is a finite measure on N

∗ with unit first moment. In the frame-
work of the random configuration model with n vertices, this corresponds to assuming that
particles live in a volume mn and hence the initial concentration of monomers with i stubs
is given by

m−1μn(i) = 1

mn
#{v ∈ Vn : dn(v) = i}, k ∈ N

∗.

After the random pairing, the concentration of polymers with size k (i.e. clusters with k

vertices) is then (mn)−1Cn(k) and Corollary 2 shows that

lim
n→∞

1

mn
Cn(k) := c∞(0, k) = 1

k(k − 1)
ν∗k(k − 2).

One has thus recovered (2).
We now conclude this work by discussing a dynamical version of the random config-

uration model that enables us to develop further the connexion between the latter and the
coagulation equations with limited aggregations (1). The number n of vertices of Vn being
fixed, we start from a configuration with no edges, and assign to each pair of stubs {s, s ′} an
exponential random variable es,s′ with parameter 1/n, such that to different pairs correspond
independent variables. These variables are used as clocks that ring at the time when an edge
appears; they may be updated once as the system evolves. The first edge is created at time
τ1,n = mins,s′ es,s′ , where the minimum is taken over the set of pairs of stubs. More precisely,
if the minimum is reached for, say, {s1, s

′
1} (that is, if τ1,n = es1,s′

1
), then the edge {s1, s

′
1} ap-

pears at time τ1,n. At the same time, we reset all the clocks es,s′ with {s, s ′} ∩ {s1, s
′
1} 
= ∅

to es,s′ = ∞, so that no such edges can further appear in the system, and we leave all the
other clocks unchanged. We proceed similarly at time τ2,n when the second clock rings, and
so on. Elementary properties of independent exponentially distributed variables ensure that
the evolution of the system is Markovian. Specifically, for every � = 1, . . . , Sn/2, the system



The Structure of Typical Clusters in Large Sparse Random 103

at time τ�,n is independent of the sequence τ1,n, . . . , τ�,n of times at which the first � edges
have been created, and is distributed as a random configuration on (Vn, S2�,n) where S2�,n

denotes a uniform random subset of Sn with 2� elements.
In a notation similar to that at the beginning of Sect. 3, we write μt,n for the empirical

distribution of degrees of vertices where we only take into account the stubs that have been
paired at time t . The following elementary lemma enables us to reduce the asymptotic study
as n → ∞ of the system at time t to that at time t = ∞ which is described in Corollary 2.

Lemma 5 Assume (7) and (8). Fix t > 0 and set p(t) = mt/(1+mt). Then for every k ∈ N
∗

we have

lim
n→∞μt,n(k) = μt(k) :=

∞∑

�=k

(
�

k

)
p(t)k(1 − p(t))�−kμ(�),

and

lim
n→∞

∞∑

k=1

kμt,n(k) =
∞∑

k=1

kμt(k) = p(t)m.

Proof The time τ1,n when the first edge is created has an exponential distribution with pa-
rameter Sn(Sn − 1)/2n. More generally the waiting time τ�+1,n − τ�,n between the appear-
ance of the �-th and the (� + 1)-th edges has an exponential distribution with parameter
(Sn −2�)(Sn −2�−1)/2n, and these waiting times are independent for � = 1, . . . , Sn/2−1.
Because Sn ∼ mn as n → ∞, it follows easily that the proportion pn(t) of stubs in Sn which
have been paired at time t converges a.s. when n → ∞ to p(t) = mt/(1 + mt). Further, the
subset of stubs which have been paired at time t is obtained by sampling without replace-
ment uniformly at random pn(t)Sn elements from Sn. The first formula in the statement then
follows readily from (7), and one obtains the second using (8). �

Next, recall that Molloy and Reed [14] characterized the existence of a giant component
(i.e. a cluster with size of order n) in random configurations as follows. Assuming (7) and
(8), the random configuration �n possesses a giant component with high probability when n

is large if and only if (10) fails. In the dynamical setting, the phase transition (this is called
gelation in the framework of coagulation equations) thus occurs at time

Tgel := inf

{
t ≥ 0 :

∞∑

k=1

k(k − 2)μt (k) > 0

}
.

We infer from Lemma 5 and straightforward calculations that

Tgel =
{

∞ if m2 ≤ 2m

m/(m2 − 2m) otherwise,

where

m2 :=
∞∑

k=1

k2μ(k).

Finally, let Cn,t (k) denote the number of clusters of size k ∈ N
∗ in the system at time t .

We deduce from Corollary 2, Lemma 5 and routine calculations the following asymptotic
result.
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Corollary 3 Assume that (7) and (8) hold. Then for every t < Tgel, we have

lim
n→∞n−1Cn,t (k) = m

(tm)k−1

k!
∞∑

a=0

(1 + mt)1−a−k (a + k − 2)!
a! ν∗k(a + k − 2)

in probability.

Proof In the light of the discussion above, we know from Corollary 2 that in the obvious
notation,

lim
n→∞n−1Ct,n(k) = mt

k(k − 1)
ν∗k

t (k − 2) in probability.

More precisely we have νt (i) = m−1
t (i + 1)μt (i + 1) and, according to Lemma 5,

mt = p(t)m = tm2/(1 + mt).

Calculations are made easier by the use of generating functions. For every finite measure
ρ on N and x ∈ [0,1], we write ρ̂(x) = ∑∞

i=0 xiρ(i). We first observe that

ν̂t (x) = ∂xμ̂t (x)/∂xμ̂t (1),

and then derive from Lemma 5 that

μ̂t (x) = μ̂(p(t)x + 1 − p(t)).

This yields

ν̂t (x) = ν̂(p(t)x + 1 − p(t)),

and thus for every k ∈ N
∗

ν̂∗k
t (x) = (ν̂t (x))k = (ν̂(p(t)x + 1 − p(t)))k = ν̂∗k(p(t)x + 1 − p(t)).

Inverting the generating function, we arrive at

ν∗k(i) =
∞∑

�=i

(
�

i

)
p(t)i(1 − p(t))�−iν∗k(�).

Finally, putting the pieces together we get for every integer k ≥ 2

mt

k(k − 1)
ν∗k

t (k − 2) = tm2

k(k − 1)(1 + tm)

∞∑

�=k−2

(
�

k − 2

)
p(t)i(1 − p(t))�−iν∗k(�),

= m
(tm)k−1

k!
∞∑

a=0

(1 + mt)1−a−k (a + k − 2)!
a! ν∗k(a + k − 2),

where at the second line we used the new variable a = � − k + 2. �

Corollary 3 should be compared with Theorem 2 and Corollary 2 in [5] (again beware of
that the notation in [5] is slightly different and that the normalizing hypothesis

∑
kμ(k) = 1
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is enforced there). As expected, we see that when n is large and t < Tgel, the concentration
Cn,t (k) of clusters of size k at time t is close to

Ct(k) :=
∞∑

a=0

ct (a, k),

where (ct (a, k) : a ∈ N, k ∈ N
∗, t ≥ 0) is the solution to the coagulation equation with lim-

ited aggregation (1) with initial condition c0(a, k) = 1{k=1}μ(a).
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